



Mark Scheme (Final)

October 2019

Pearson Edexcel IAL Mathematics

(WME01/01) Mechanics 1

## WME01 OCT 2019 POST QPEC Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                           | Mark | S   |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 1.                 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                            |      |     |
| (a)                | CLM: $3m \times 4u - 2m \times 3u = 3mv + 2mv$                                                                                                                                                                                                                                   | M1A1 |     |
|                    | v = 6u/5                                                                                                                                                                                                                                                                         | A1   | (3) |
| (b)                | For $Q$ : $\pm 2m(\frac{6u}{5} - (-3u))$ $42mu$                                                                                                                                                                                                                                  | M1A1 |     |
|                    | 5                                                                                                                                                                                                                                                                                | A1   | (3) |
|                    |                                                                                                                                                                                                                                                                                  |      |     |
| Aliter             | For $P$ : $\pm 3m(\frac{6u}{5} - 4u)$ <b>M1A1</b>                                                                                                                                                                                                                                |      |     |
|                    | $\frac{42mu}{5}$ A1                                                                                                                                                                                                                                                              |      | (6) |
|                    | Notes for Qu 1                                                                                                                                                                                                                                                                   |      |     |
| 1(a)               | M1 for an equation with the correct no. of terms, dim correct (allow consistent missing <i>m</i> 's or consistent extra <i>g</i> 's) with one unknown, but allow sign errors                                                                                                     |      |     |
|                    | First A1 for a correct equation (allow -v)                                                                                                                                                                                                                                       |      |     |
|                    | Second A1 for $\frac{6u}{5}$ (must be positive)                                                                                                                                                                                                                                  |      |     |
| 1(b)               | M1 for impulse-momentum principle applied to $Q$ ; condone sign errors but must be using $2m$ for mass and subtracting momenta (allow ' $v$ ' or their $v$ in the equation for this M mark provided $v$ is a velocity) M0 if it's dimensionally incorrect e.g if $g$ is included |      |     |
|                    | First A1 for a correct equation                                                                                                                                                                                                                                                  |      |     |
|                    | Second A1 for $\frac{42mu}{5}$                                                                                                                                                                                                                                                   |      |     |
| Aliter             | M1 for impulse-momentum principle applied to P; condone sign errors but must be using 3m for mass and subtracting momenta (allow v in the equation for this M mark) M0 if g is included  First A1 for a correct equation                                                         |      |     |
|                    | Second A1 for $\frac{42mu}{5}$                                                                                                                                                                                                                                                   |      |     |

| Question<br>Number | Scheme                                                                                                                                                   | Marks  |     |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
| 2(a)               | $40 = \frac{1}{2}gt_1^2$                                                                                                                                 | M1     |     |
|                    | $t_1 = \sqrt{\frac{80}{g}} \left( = \frac{20}{7} = 2.857 \right)$                                                                                        | A1     |     |
|                    | $v_1 = \sqrt{2g \times 40} \text{ or } g \times \frac{20}{7}  (=28)$                                                                                     | B1     |     |
|                    | $t_2 = \frac{\frac{1}{2} \times \sqrt{2g \times 40}}{g}  (=\frac{10}{7})  (1.42857)  \text{or}  \frac{\sqrt{2g \times 40}}{g}  (=\frac{20}{7})  (2.857)$ | M1     |     |
|                    | Total time = 5.7 s or 5.71 s                                                                                                                             | A1     | (5) |
|                    | <b>N.B.</b> Allow 5.72 then rounded to 5.7 or 5.71                                                                                                       |        |     |
| 2(b)               |                                                                                                                                                          |        |     |
|                    | $v_2 = 14$ ; $v_3 = 7$ ; $v_4 = 3.5$                                                                                                                     | M1     |     |
|                    | $0=3.5^2-2gh$                                                                                                                                            | M1A1   |     |
|                    | h = 0.625 or $0.63$ (m) or $5/8$ (m)                                                                                                                     | A1 cso | (4) |
|                    |                                                                                                                                                          |        | (9) |
|                    | Notes for qu 2                                                                                                                                           |        |     |
| 2(a)               | First M1 for a complete method to obtain an equation in $t_1$ only                                                                                       |        |     |
|                    | First A1 for a correct unsimplified $t_1$ (correct to at least 2SF as a decimal)                                                                         |        |     |
|                    | B1 for a correct unsimplified $v_1$ value, allow a negative answer                                                                                       |        |     |
|                    | Second M1 for $\frac{\frac{1}{2}v_1}{g}$ or $\frac{v_1}{g}$ with their $v_1$ value substituted (correct to at least 2SE as a decimal if no working)      |        |     |
|                    | reast 251 as a decimal if no working)                                                                                                                    |        |     |
|                    | Second A1 for either 5.7 or 5.71 (A0 for $\frac{40}{7}$ )                                                                                                |        |     |
| 2(b)               | First M1 for $v_4 = (\frac{1}{2})^3 v_1$ oe N.B. their $v_1$ .                                                                                           |        |     |
|                    | Second M1 for a complete method to obtain an equation in $h$ only e.g. $0 = (v_4)^2 - 2gh$                                                               |        |     |
|                    | First A1 for a correct equation                                                                                                                          |        |     |
|                    | Second A1 for 0.63 or 0.625 cso (A0 for 40.625)                                                                                                          |        |     |
|                    | <b>N.B.</b> If they go as far as $v_3 (= 7)$ or $v_5 (= 1.75)$ then use $0 = (v_3)^2 - 2gh$ or $0 = (v_5)^2 - 2gh$ , can score max M0M1A0A0              |        |     |
|                    |                                                                                                                                                          |        |     |
|                    |                                                                                                                                                          |        |     |
|                    |                                                                                                                                                          |        |     |

| Question<br>Number | Scheme                                                                                                           | Marks |
|--------------------|------------------------------------------------------------------------------------------------------------------|-------|
| 3.                 | Trailer: $2060 - 300 - 400g \sin \alpha = 400a$                                                                  | M1A2  |
|                    | Car: $D - 420 - 800g \sin \alpha - 2060 = 800a$                                                                  | M1A2  |
| Aliter             | System: $D - 420 - 800g \sin \alpha - 300 - 400g \sin \alpha = 400a + 800a$ <b>M1A2</b>                          |       |
|                    | D = 6000                                                                                                         | A1    |
|                    | Notes for qu 3                                                                                                   | (7)   |
|                    | Use the mass in the <i>ma</i> term of an equation to determine to which part of the system the equation applies. |       |
|                    | First M1 for equation of motion for the trailer, correct no. of terms, with weight resolved, condone sign errors |       |
|                    | First A2 for a correct equation (including T used for 2060), -1 each error                                       |       |
|                    | Second M1 for equation of motion for the car, correct no. of terms, with weight resolved, condone sign errors    |       |
|                    | Second A2 for a correct equation (including <i>T</i> used for 2060), -1 each error                               |       |
| Aliter             | Replace either of the above with an equation of motion for the whole system                                      |       |
|                    | M1 for equation of motion for the whole system, correct no. of terms,                                            |       |
|                    | with both weights resolved, condone sign errors                                                                  |       |
|                    | A2 for a correct equation, -1 each error                                                                         |       |
|                    | <b>N.B.</b> If g is consistently omitted, this leads to $D = 6000$ . This scores max                             |       |
|                    | M1A1A0M1A1A0A0                                                                                                   |       |
|                    |                                                                                                                  |       |
|                    |                                                                                                                  |       |
|                    |                                                                                                                  |       |
|                    |                                                                                                                  |       |
|                    |                                                                                                                  |       |
|                    |                                                                                                                  |       |
|                    |                                                                                                                  |       |
|                    |                                                                                                                  |       |
|                    |                                                                                                                  |       |
|                    |                                                                                                                  |       |
|                    |                                                                                                                  |       |
|                    |                                                                                                                  |       |
|                    |                                                                                                                  |       |
|                    |                                                                                                                  |       |

| Question<br>Number | Scheme                                                                                                                                                                                                                           | Mar         | ks  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|
| 4(a)               | $R = kmg \cos \theta + mg \sin \theta$ (perpendicular to the plane)                                                                                                                                                              | M1A2        |     |
|                    | $F = kmg \sin \theta - mg \cos \theta  \text{(parallel to the plane)}$                                                                                                                                                           | M1A2        |     |
|                    | $F = \mu R$ seen or implied                                                                                                                                                                                                      | B1          |     |
|                    | Eliminate $F$ and $R$ and <b>explicitly cancel <math>m</math></b> to give an equation in $k$ , $\theta$ and $\mu$ <b>only</b> (allow inconsistent or no $g$ 's)                                                                  | M1          |     |
|                    | Use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$ to obtain an expression for $\mu$ in terms of $k$ and $\tan \theta$                                                                                                       |             |     |
|                    | $\theta$ only (all g's must have been cancelled), dependent on previous three M marks.                                                                                                                                           | <b>DM</b> 1 |     |
|                    | Need to see division by $\cos \theta$ top and bottom oe for this mark.                                                                                                                                                           |             |     |
|                    | $\mu = \frac{k \tan \theta - 1}{k + \tan \theta}$ GIVEN ANSWER (Must be <b>exactly</b> the same)                                                                                                                                 | A1          | (10 |
| Aliter             | N.B. Horizontal and/or vertical resolutions are possible                                                                                                                                                                         |             |     |
|                    | $mg + F\cos\theta = R\sin\theta$ (horizontal) M1A2                                                                                                                                                                               |             |     |
|                    | $R\cos\theta + F\sin\theta = kmg  \text{(vertical)} $ M1A2                                                                                                                                                                       |             |     |
| 4(b)               | $\frac{\tan \theta - 1}{1 + \tan \theta} > 0  \mathbf{OR}  mg \sin \theta - mg \cos \theta > 0$                                                                                                                                  | M1          |     |
|                    | $\tan \theta > 1 \Rightarrow \theta > 45^{\circ}$ GIVEN ANSWER                                                                                                                                                                   | A1          | (2  |
|                    |                                                                                                                                                                                                                                  |             | (1: |
|                    | Notes for qu 4                                                                                                                                                                                                                   |             |     |
| 4(a)               | First M1 for resolving perp to the plane, dimensionally correct, with                                                                                                                                                            |             |     |
| -(••)              | correct no. of terms, <i>kmg</i> and <i>mg</i> both resolved, condone sign errors                                                                                                                                                |             |     |
|                    | First A2 for a correct equation, -1 each error (allow X for mg anywhere)                                                                                                                                                         |             |     |
|                    | Consistent omission of g, treat as <b>one</b> error  Second M1 for resolving parallel to the plane, dimensionally correct,                                                                                                       |             |     |
|                    | with correct no. of terms, <i>kmg</i> and <i>mg</i> both resolved, condone sign errors                                                                                                                                           |             |     |
|                    | First A2 for a correct equation, -1 each error (allow <i>X</i> for <i>mg</i> anywhere)                                                                                                                                           |             |     |
|                    | Consistent omission of g, treat as <b>one</b> error                                                                                                                                                                              |             |     |
|                    | $F = \mu R$ seen or implied, even on a diagram                                                                                                                                                                                   |             |     |
|                    | Third M1 (independent) for eliminating <i>F</i> and <i>R</i> and cancelling <i>m</i> 's                                                                                                                                          |             |     |
|                    | Fourth DM1, dependent on previous three M marks                                                                                                                                                                                  |             |     |
|                    | Fifth A1 for correctly obtaining the GIVEN ANSWER                                                                                                                                                                                |             |     |
|                    |                                                                                                                                                                                                                                  |             |     |
|                    | M1 for either using $k = 1$ and                                                                                                                                                                                                  |             |     |
| 4(1-)              | M1 for either using $k = 1$ and<br>the given answer $> 0$ or $= 0$                                                                                                                                                               |             |     |
| 4(b)               | M1 for either using $k = 1$ and<br>the given answer $> 0$ or $= 0$<br>or using $F > 0$ or $F = 0$                                                                                                                                |             |     |
| 4(b)               | M1 for either using $k = 1$ and<br>the given answer $> 0$ or $= 0$<br>or using $F > 0$ or $F = 0$<br>Allow M1A0 for using $k = 1$ and $\theta = 45^{\circ}$ to show $\mu = 0$                                                    |             |     |
| 4(b)               | M1 for either using $k = 1$ and<br>the given answer $> 0$ or $= 0$<br>or using $F > 0$ or $F = 0$<br>Allow M1A0 for using $k = 1$ and $\theta = 45^{\circ}$ to show $\mu = 0$<br>M0 if first thing seen is $\tan \theta - 1 > 0$ |             |     |
| 4(b)               | M1 for either using $k = 1$ and<br>the given answer $> 0$ or $= 0$<br>or using $F > 0$ or $F = 0$<br>Allow M1A0 for using $k = 1$ and $\theta = 45^{\circ}$ to show $\mu = 0$                                                    |             |     |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mark | S  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 5(a)               | $M(C), Mg \times 1.5 = 12g \times 1.75$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1A1 |    |
|                    | M=14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1   | (3 |
| 5(b)               | A moments equation, with usual rules i.e. dim correct, correct no. of terms, condone sign errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1A1 |    |
|                    | ( $\uparrow$ ), $T_A + 2T_A = 12g + 15g$ or another Moments equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1A1 |    |
|                    | Possible moments equations:<br>$M(A)$ , $2T_A \times 3.5 = 12g \times 1.75 + 15gx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |    |
|                    | $M(B)$ , $(2T_A \times 1.5) + (T_A \times 5) = 12g \times 3.25 + 15g(5 - x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |
|                    | $M(C)$ , $T_A \times 3.5 = 12g \times 1.75 + 15g(3.5 - x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |    |
|                    | $M(D)$ , $2T_A \times 1.75 = T_A \times 1.75 + 15g(x - 1.75)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |    |
|                    | $M(G)$ , $T_A x = 2T_A(3.5 - x) + 12g(x - 1.75)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |    |
|                    | <b>N.B.</b> These equations could be in terms of $T_C$ and/or in terms of their own unknown length (e.g. $y$ ) where $y$ is clearly defined in terms of $x$ .                                                                                                                                                                                                                                                                                                                                                                                                                               |      |    |
|                    | x = 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1   | (5 |
|                    | Notes on qu 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | (  |
| 5(a)               | <b>N.B.</b> they may use 2 equations in $T_C$ and $M$ and then eliminate $T_C$ to give an equation $\underline{\text{in } M \text{ only}}$ . Possible equations: (↑), $T_C = 12g + Mg$ $M(A), 12g \times 1.75 + 5Mg = 3.5T_C$ $M(B), 12g \times 3.25 = 1.5T_C$ $M(G), T_C \times 1.75 = 3.25Mg$ <b>N.B.</b> M0 if they never use $T_A = 0$ First A1 for a correct equation $\underline{\text{in } M \text{ only}}$ Second A1 for $M = 14$ <b>N.B.</b> If $g$ 's are $\underline{\text{consistently}}$ omitted in $\underline{\text{all}}$ equations used in 5(a), full marks can be scored. |      |    |
| 5(b)               | First M1 for a moments equation with the usual rules, in $x$ and at most 2 further unknowns  First A1 for a correct equation in $x$ and one other unknown  Second M1 for a vertical resolution in 2 unknowns or a second moments equation in $x$ and at most 2 further unknowns  Second A1 for a correct resolution in one unknown or for a correct moments equation in $x$ and the same one other unknown  Third A1 for $x = 2.8$                                                                                                                                                          |      |    |
|                    | <b>N.B.</b> If <i>g</i> 's are <u>consistently</u> omitted in <u>both</u> equations in 5(b), full marks can be scored.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |    |

| Question<br>Number | Scheme                                                                                                                                                                                                                     | Marks                   |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 6(a)               | V $T$ $T$ $T$                                                                                                                                                                                                              | B1 shape<br>B1 V, T, 30 |
| 6(b)               | $V = 0.8T$ or $V = \frac{400}{60 - T}$ oe                                                                                                                                                                                  | B1 (1)                  |
| 6(c)               | $\frac{(30+30-T)V}{2} = 200$ (trapezium) or $V = \frac{400}{60-T}$                                                                                                                                                         | M1A1                    |
|                    | $V = 0.8T  \text{or}  V = \frac{400}{60 - T} \text{ oe}$ $\frac{(30 + 30 - T)V}{2} = 200  \text{(trapezium)}  \text{or}  V = \frac{400}{60 - T}$ $\frac{(30 + 30 - T)0.8T}{2} = 200  \text{or}  0.8T = \frac{400}{60 - T}$ | M1                      |
|                    | $I^{2}-60I+300=0$                                                                                                                                                                                                          | A1 (4)                  |
| 6(d)               | (T-10)(T-50) = 0                                                                                                                                                                                                           | M1                      |
|                    | T = 10  or  50                                                                                                                                                                                                             | A1 (2)                  |
| 6(e)               | T = 10 since $T < 30Any two of:$                                                                                                                                                                                           | A1 (3)<br>B1 B1         |
|                    | do not have an instantaneous change from acceleration to constant speed do not have constant velocity do not have constant acceleration reaction time at start stop watch error at end -1 for each incorrect extra         |                         |
|                    |                                                                                                                                                                                                                            | (2)                     |
|                    | Notes for an (                                                                                                                                                                                                             | (12)                    |
| 6(a)               | Notes for qu 6  First B1 for shape; B0 if there is a solid vertical line at the end but allow a dotted line.  Second B1 for V, T and 30 correctly placed. Allow appropriate                                                |                         |
| 6(b)               | delineators.  B1 for $V = 0.8T$ or $V = \frac{400}{60 - T}$ oe but $V$ must be in terms of $T$ .                                                                                                                           |                         |
| 6(c)               | First M1 for, an equation in $V$ and $T$ only, with a clear attempt to use area = 200, with the correct structure (3 alternatives) (M0 if a single <i>suvat</i> equation is used or $\frac{1}{2}$ is missing               |                         |
|                    | OR: $\frac{1}{2}TV + V(30 - T) = 200$ (triangle + rectangle)                                                                                                                                                               |                         |
|                    | <b>OR</b> : $30V - \frac{1}{2}TV = 200$ (rectangle – triangle)                                                                                                                                                             |                         |
|                    | First A1 for a correct equation                                                                                                                                                                                            |                         |

| Question<br>Number | Scheme                                                                                                                                                                                                                     | Marks |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                    | Second independent M1 for substituting for $V$ in terms of $T$ , using their answer for (b) or using $V = 0.8T$ in the alternative, but must be using or have used 200, to earn this mark to give an equation in $T$ only. |       |
|                    | Second A1 for $T^2 - 60T + 500 = 0$                                                                                                                                                                                        |       |
|                    | M1 for a clear attempt to solve their quadratic (must be a 3 term                                                                                                                                                          |       |
| 6(d)               | quadratic), with working  N.B. This mark can be implied by two correct values for T                                                                                                                                        |       |
|                    | First A1 for two correct answers 10 or 50                                                                                                                                                                                  |       |
|                    | Second A1 for 10 with correct justification                                                                                                                                                                                |       |
| 6(e)               | +1 for each correct answer (max of 2), -1 for each incorrect <b>extra</b> answer after two answer.                                                                                                                         |       |
|                    | Incorrect answers:                                                                                                                                                                                                         |       |
|                    | Air resistance, friction at the ground, height or size of athlete                                                                                                                                                          |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |
|                    |                                                                                                                                                                                                                            |       |

| Question<br>Number                    | Scheme                                                                                                                                                                                                                                                                    | Marks   |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7.(i)                                 | $P^2 = 8^2 + 6^2 - 2 \times 8 \times 6 \cos 60^{\circ}$                                                                                                                                                                                                                   | M1A1    |
|                                       | $P = \sqrt{52} = 7.2$ (N) or better                                                                                                                                                                                                                                       | A1      |
| (ii)                                  | $\frac{\sin \alpha}{6} = \frac{\sin 60^{\circ}}{\sqrt{52}} \qquad \text{or} \qquad \frac{\sin \beta}{8} = \frac{\sin 60^{\circ}}{\sqrt{52}}$ $6^2 = 8^2 + P^2 - 2 \times 8 \times P \cos \alpha \qquad \text{or} \qquad 8^2 = 6^2 + P^2 - 2 \times 6 \times P \cos \beta$ | M1A1 ft |
|                                       | $\alpha = 46.(1)^{\circ}$ $\beta = 73.(897)$ or $106.(103)$                                                                                                                                                                                                               | A1      |
|                                       | Bearing is 74° to nearest degree                                                                                                                                                                                                                                          | A1 cso  |
|                                       | 8                                                                                                                                                                                                                                                                         | (7)     |
|                                       | Alternative using column vectors                                                                                                                                                                                                                                          |         |
| (i)                                   | $P^2 = (8\cos 30^0)^2 + (6 - 8\sin 30^0)^2$                                                                                                                                                                                                                               | M1A1    |
| · · · · · · · · · · · · · · · · · · · | $P = \sqrt{52} = 7.2$ (N) or better                                                                                                                                                                                                                                       | A1      |
| (ii)                                  | $\tan \beta = \frac{8\cos 30^{\circ}}{6 - 8\sin 30^{\circ}}$ or $\sin \beta = \frac{8\cos 30^{\circ}}{\sqrt{52}}$ or $\cos \beta = \frac{6 - 8\sin 30^{\circ}}{\sqrt{52}}$ or equivalents for $(90^{\circ} - \beta)$                                                      | M1A1 ft |
|                                       | $\beta = 73.(897)^{\circ}$ or $(90^{\circ} - \beta) = 16.103$                                                                                                                                                                                                             | A1      |
|                                       | Bearing is 74° to nearest degree                                                                                                                                                                                                                                          | A1      |
|                                       |                                                                                                                                                                                                                                                                           |         |
|                                       | <b>N.B.</b> If 4 is consistently used instead of 8, max marks are:                                                                                                                                                                                                        |         |
|                                       | (i) M1A0A0 (ii) M1A1ftA0A0 i.e. 3/7                                                                                                                                                                                                                                       |         |
|                                       | Notes for qu 7                                                                                                                                                                                                                                                            |         |
| 7(i)                                  | First M1 for use of the cosine rule (with $P$ , 6, 8 and $60^{\circ}$ or their $\alpha$ or $(120^{\circ} - \text{their } \alpha)$ .                                                                                                                                       |         |
|                                       | First A1 for a correct equation                                                                                                                                                                                                                                           |         |
| (ii)                                  | Second A1 for a correct magnitude  Second M1 for a complete method to find a relevant angle – must be using their <i>P</i> , 60° (or 120°) and either 6 or 8 if using the sine rule or their <i>P</i> , 6, and 8 if using the cosine rule.                                |         |
|                                       | Third A1 ft for a correct equation, ft on their <i>P</i> Fourth A1 for at least one correct angle, accurate to nearest degree                                                                                                                                             |         |
|                                       | Fifth A1 cso for a correct bearing to nearest degree                                                                                                                                                                                                                      |         |
|                                       | 1 Ittil A1 eso for a correct ocaring to hearest degree                                                                                                                                                                                                                    |         |
|                                       | Alternative using column vectors                                                                                                                                                                                                                                          |         |
| (i)                                   | First M1 for use of Pythagoras with correct structure allowing for sin/cos confusion and sign errors  First A1 for a correct equation                                                                                                                                     |         |
|                                       | Second A1 for a correct magnitude                                                                                                                                                                                                                                         |         |
| (ii)                                  | Second M1 for a complete method to find a relevant angle – must be using their <i>P</i> components with correct structure allowing for cos/sin confusion and sign errors                                                                                                  |         |

| Question<br>Number | Scheme                                                               | Marks |
|--------------------|----------------------------------------------------------------------|-------|
|                    | Third A1 ft for a correct equation, ft on their <i>P</i> components  |       |
|                    | Fourth A1 for at least one correct angle, accurate to nearest degree |       |
|                    | Fifth A1 cso for a correct bearing to nearest degree                 |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |
|                    |                                                                      |       |

| Question<br>Number | Scheme                                                                                                                                                                                                                                    | Marks        | •    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|
| 8(a)               | $\mathbf{v}_B = (40\cos 60)\mathbf{i} + (-40\sin 60)\mathbf{j}$                                                                                                                                                                           | M1A1         |      |
|                    | $=20\mathbf{i}-20\sqrt{3}\mathbf{j}$                                                                                                                                                                                                      | A1           | (3)  |
| 8(b)               | $\mathbf{r} = 60\mathbf{i} + t(-20\mathbf{i})$                                                                                                                                                                                            | M1 A1        |      |
| ( )                | $\mathbf{s} = t(20\mathbf{i} - 20\sqrt{3}\mathbf{j})$                                                                                                                                                                                     | B1 <b>ft</b> | (3)  |
| 8(c)               | $\overrightarrow{AB} = \mathbf{s} - \mathbf{r} = t(20\mathbf{i} - 20\sqrt{3}\mathbf{j}) - [60\mathbf{i} + t(-20\mathbf{i})]$                                                                                                              | M1           |      |
|                    | $\sqrt{(40t - 60)^2 + (-20t\sqrt{3})^2} = 60  \mathbf{OR}  (40t - 60)^2 + (-20t\sqrt{3})^2 = 60^2$                                                                                                                                        | M1 A2ft      |      |
|                    | $2800t^2 - 4800t = 0$                                                                                                                                                                                                                     | M1 A1        |      |
|                    | $t = \frac{12}{7}$                                                                                                                                                                                                                        | A1           |      |
|                    | 13 43 OR 1 43 pm (nearest minute)                                                                                                                                                                                                         | A1 cso (8)   |      |
|                    |                                                                                                                                                                                                                                           |              | (14) |
|                    | Notes for qu 8                                                                                                                                                                                                                            |              |      |
|                    | For (a) and (b) allow working in column vector form                                                                                                                                                                                       |              |      |
| 8(a)               | M1 for 40 resolved in both components but allow sin/cos confusion and sign errors                                                                                                                                                         |              |      |
|                    | First A1 for two correct unsimplified components                                                                                                                                                                                          |              |      |
|                    | Second A1 for a correct vector, allow 2SF or better for the <b>j</b> component <b>N.B.</b> Need to see a complete velocity vector not just $p = 0$ , $q = 0$                                                                              |              |      |
| <b>8(b)</b>        | M1 for $\mathbf{r} = 60\mathbf{i} \pm 20t\mathbf{i}$                                                                                                                                                                                      |              |      |
|                    | A1 for $\mathbf{r} = 60\mathbf{i} + t(-20\mathbf{i})$                                                                                                                                                                                     |              |      |
|                    | B1 ft on their answer for (a)                                                                                                                                                                                                             |              |      |
| 8(c)               | M1 for finding either $\mathbf{s} - \mathbf{r}$ or $\mathbf{r} - \mathbf{s}$ . Allow missing brackets if they recover.                                                                                                                    |              |      |
|                    | Second M1 for obtaining an equation in $t$ only by using the magnitude of their $\mathbf{s} - \mathbf{r}$ or $\mathbf{r} - \mathbf{s}$ and equating it to 60 (allow the square on both sides).  Must be a clear attempt to use Pythagoras |              |      |
|                    | First and Second A1 ft for a correct equation, ft on their $s-r$ or $r-s$                                                                                                                                                                 |              |      |
|                    | Third M1 for a simplified quadratic equation = 0 with at least a $t^2$ and a $t$ term                                                                                                                                                     |              |      |
|                    | Third A1 for a correct equation from correct working ( <b>N.B</b> . Coefficient of $t^2$ must be in range [2797,2825])                                                                                                                    |              |      |
|                    | Fourth A1 for a correct value of t (allow AWRT 1.7) from correct working                                                                                                                                                                  |              |      |
|                    | Fifth A1 for a correct time to the nearest minute <b>cso</b>                                                                                                                                                                              |              |      |
|                    | SC: If using $+20\sqrt{3}$ oe for the coefficient of j in part (a) , can score for (c) max M1M1A2 M1A1A1A0                                                                                                                                |              |      |